7,508 research outputs found

    Modelling the influence of Major Baltic Inflows on near-bottom conditions at the entrance of the Gulf of Finland

    Get PDF
    A coupled hydrodynamic-biogeochemical model was implemented in order to estimate the effects of Major Baltic Inflows on the near-bottom hydrophysical and biogeochemical conditions in the northern Baltic Proper and the western Gulf of Finland during the period 1991-2009. We compared results of a realistic reference run to the results of an experimental run where Major Baltic Inflows were suppressed. Further to the expected overall decrease in bottom salinity, this modelling experiment confirms that in the absence of strong saltwater inflows the deep areas of the Baltic Proper would become more anoxic, while in the shallower areas (western Gulf of Finland) near-bottom average conditions improve. Our experiment revealed that typical estuarine circulation results in the sporadic emergence of short-lasting events of near- bottom anoxia in the western Gulf of Finland due to transport of water masses from the Baltic Proper. Extrapolating our results beyond the modelled period, we speculate that the further deepening of the halocline in the Baltic Proper is likely to prevent inflows of anoxic water to the Gulf of Finland and in the longer term would lead to improvement in near-bottom conditions in the Baltic Proper. Our results reaffirm the importance of accurate representation of salinity dynamics in coupled Baltic Sea models serving as a basis for credible hindcast and future projection simulations of biogeochemical conditions.JRC.H.1-Water Resource

    The Gulf of Finland assessment

    Get PDF
    This assessment on the environmental state of the Gulf of Finland in 1996 – 2014 was produced by together over 100 scientists from Estonia, Finland, and Russia in the context of the Gulf of Finland Year 2014. The thematic year aimed at – and succeeded in – giving additional value for the protection and restoration of the Gulf of Finland environment by enhancing political presence and interaction between the private sector, decision-makers, and citizens. This assessment concentrates on the past development and the current state of the Gulf of Finland environment and pressures affecting it. The themes include climate in the Gulf of Finland area, Gulf of Finland physics, geology and geodiversity, eutrophication, hazardous substances, biodiversity, fishes and fisheries, nonindigenous species, marine litter, underwater soundscape, maritime traffic and its safety, and environmental valuation. Each chapter also delivers expert opinions and recommendations for the future

    Varying chick mortality in an organochlorine-"strained" population of the nominate lesser black-backed gull Larus f. fuscus in the Baltic Sea

    Get PDF
    Severe reproductive failure has contributed to a drastic population decline of the nomi-nate Lesser Black-backed Gull (Larus fuscus fuscus) in its breeding grounds in the Gulf of Finland and the Bay of Bothnia. In intensive field studies in the central area of the Gulf of Finland, roughly 65–70 % of chicks died in their nest in the 1980s and 1990s due to innate diseases. In the 1990s, the fledging rate was only 0.02. The diseases consisted mainly of liver degeneration and various inflammations, and most chicks died of sepsis. The hepatic concentrations of legacy organochlorines (OC) in dead chicks were high, and they corre-lated with the proportion of dead chicks in a brood. During the 2000s, however, the occur-rence of diseased chicks in the Gulf of Finland decreased to 48%, which helped to achieve a fledging rate supposedly sustaining the population (0.52). At the same time, the trends in hepatic levels of certain legacy OCs in chicks decreased, especially the DDE, HCB, -HCH, and trans-nonachlor levels. In spite of skewed sampling (only dead chicks were available), our results indicate an enhancing health status among the present population, probably due to a less contaminated diet during the non-breeding period

    Wave conditions in the Baltic Proper and in the Gulf of Finland during windstorm Gudrun

    No full text
    International audienceWave conditions in the northern Baltic Proper during windstorm Erwin/Gudrun (January 2005) are analysed based on in situ measurements in three locations and output of operational wave models from the German Weather Forecast Service, the Danish Meteorological Institute and the Finnish Institute of Marine Research. The measured significant wave height reached 7.2 m in the northern Baltic Proper and 4.5 m in the Gulf of Finland. The roughest wave conditions, estimated from the comparison of the forecast and measured data, occurred remote from the sensors, off the coasts of Saaremaa and Latvia where the significant wave height was about 9.5 m. Peak periods exceeded 12 s in a large part of the northern Baltic Proper and in the central part of the Gulf of Finland

    An integrated simulation model to evaluate national policies for the abatement of agricultural nutrients in the Baltic Sea

    Get PDF
    This study introduces a prototype model for evaluating policies to abate agricultural nutrients in the Baltic Sea from a Finnish national point of view. The stochastic simulation model integrates nutrient dynamics of nitrogen and phosphorus in the sea basins adjoining the Finnish coast, nutrient loads from land and other sources, benefits from nutrient abatement (in the form of recreation and other ecosystem services) and the costs of agricultural abatement activities. The aim of this study is to present the overall structure of the model and to demonstrate its potential using preliminary parameters. The model is made flexible for further improvements in all of its ecological and economic components. Results of a sensitivity analysis suggest that investments in reducing the nutrient runoff from arable land in Finland would become profitable only if Finland’s neighbors in the northern Baltic committed themselves to similar reductions. Environmental investments for improving water quality yield the highest returns for the Bothnian Bay and the Gulf of Finland, and smaller returns for the Bothnian Sea. In the Bothnian Bay, the abatement activities become profitable because the riverine loads from Finland represent a high proportion of the total nutrient loads. In the Gulf of Finland, this proportion is low, but the size of the coastal population benefiting from improved water quality is high.ecosystem services, nutrient abatement, Monte Carlo simulation, recreation, valuation, Environmental Economics and Policy, Research Methods/ Statistical Methods,

    Archaeological Survey of the Outer Islands of the Gulf of Finland in 2019

    Get PDF
    In 2019, an expedition of the Institute for the History of Material Culture (IIMK) RAS conducted archaeological surveys on the following islands in the archipelago of Vneshniye Ostrova (Outer Islands, Finnish: Suomenlahden ulkosaaret) in the Gulf of Finland: Moshchny Island (Lavansaari), Maly (Peninsaari), Seskar (Seiskari) and Yuzhny Virgin (Itä-Viiri). Familiar sites were re-examined and new ones were revealed. On Moshchny Island, a cairn, a burial ground, a Bronze Age – Early Iron Age settlement, a stone foundation of a church of the Modern Period and a group of stone heaps were discovered. On Yuzhny Virgin island, stone structures including labyrinths, circles and heaps of stone were examined. The studied sites are culturally close to the antiquities of the northern littoral of the Gulf of Finland (the Vyborg region of Leningrad oblast and southeastern Finland)

    Upwelling events, coastal offshore exchange, links to biogeochemical processes - Highlights from the Baltic Sea Sciences Congress at Rostock University, Germany, 19-22 March 2007

    Get PDF
    The Baltic Sea Science Congress was held at Rostock University, Germany, from 19 to 22 March 2007. In the session entitled"Upwelling events, coastal offshore exchange, links to biogeochemical processes" 20 presentations were given,including 7 talks and 13 posters related to the theme of the session.This paper summarises new findings of the upwelling-related studies reported in the session. It deals with investigationsbased on the use of in situ and remote sensing measurements as well as numerical modelling tools. The biogeochemicalimplications of upwelling are also discussed.Our knowledge of the fine structure and dynamic considerations of upwelling has increased in recent decades with the advent ofhigh-resolution modern measurement techniques and modelling studies. The forcing and the overall structure, duration and intensity ofupwelling events are understood quite well. However, the quantification of related transports and the contribution to the overall mixingof upwelling requires further research. Furthermore, our knowledge of the links between upwelling and biogeochemical processes is stillincomplete. Numerical modelling has advanced to the extent that horizontal resolutions of c. 0.5 nautical miles can now be applied,which allows the complete spectrum of meso-scale features to be described. Even the development of filaments can be describedrealistically in comparison with high-resolution satellite data.But the effect of upwelling at a basin scale and possible changes under changing climatic conditions remain open questions

    Maritime transportation in the Gulf of Finland in 2007 and in 2015

    Get PDF
    The Gulf of Finland is said to be one of the densest operated sea areas in the world. It is a shallow and economically vulnerable sea area with dense passenger and cargo traffic of which petroleum transports have a share of over 50 %. The winter conditions add to the risks of maritime traffic in the Gulf of Finland. It is widely believed that the growth of maritime transportation will continue also in the future. The Gulf of Finland is surrounded by three very different national economies with, different maritime transportation structures. Finland is a country of high GDP/per capita with a diversified economic structure. The number of ports is large and the maritime transportation consists of many types of cargoes: raw materials, industrial products, consumer goods, coal and petroleum products, and the Russian transit traffic of e.g. new cars and consumer goods. Russia is a large country with huge growth potential; in recent years, the expansion of petroleum exports has lead to a strong economic growth, which is also apparent in the growth of maritime transports. Russia has been expanding its port activities in the Gulf of Finland and it is officially aiming to transport its own imports and exports through the Russian ports in the future; now they are being transported to great extend through the Finnish, Estonian and other Baltic ports. Russia has five ports in the Gulf of Finland. Estonia has also experienced fast economic growth, but the growth has been slowing down already during the past couples of years. The size of its economy is small compared to Russia, which means the transported tonnes cannot be very massive. However, relatively large amounts of the Russian petroleum exports have been transported through the Estonian ports. The future of the Russian transit traffic in Estonia looks nevertheless uncertain and it remains to be seen how it will develop and if Estonia is able to find replacing cargoes if the Russian transit traffic will come to an end in the Estonian ports. Estonia’s own import and export consists of forestry products, metals or other raw materials and consumer goods. Estonia has many ports on the shores of the Gulf of Finland, but the port of Tallinn dominates the cargo volumes. In 2007, 263 M tonnes of cargoes were transported in the maritime traffic in the Gulf of Finland, of which the share of petroleum products was 56 %. 23 % of the cargoes were loaded or unloaded in the Finnish ports, 60 % in the Russian ports and 17 % in the Estonian ports. The largest ports were Primorsk (74.2 M tonnes) St. Petersburg (59.5 M tonnes), Tallinn (35.9 M tonnes), Sköldvik (19.8 M tonnes), Vysotsk (16.5 M tonnes) and Helsinki (13.4 M) tonnes. Approximately 53 600 ship calls were made in the ports of the Gulf of Finland. The densest traffic was found in the ports of St. Petersburg (14 651 ship calls), Helsinki (11 727 ship calls) and Tallinn (10 614 ship calls) in 2007. The transportation scenarios are usually based on the assumption that the amount of transports follows the development of the economy, although also other factors influence the development of transportation, e.g. government policy, environmental aspects, and social and behavioural trends. The relationship between the development of transportation and the economy is usually analyzed in terms of the development of GDP and trade. When the GDP grows to a certain level, especially the international transports increase because countries of high GDP produce, consume and thus transport more. An effective transportation system is also a precondition for the economic development. In this study, the following factors were taken into consideration when formulating the future scenarios: maritime transportation in the Gulf of Finland 2007, economic development, development of key industries, development of infrastructure and environmental aspects in relation to maritime transportation. The basic starting points for the three alternative scenarios were: • the slow growth scenario: economic recession • the average growth scenario: economy will recover quickly from current instability • the strong growth scenario: the most optimistic views on development will realize According to the slow growth scenario, the total tonnes for the maritime transportation in the Gulf of Finland would be 322.4 M tonnes in 2015, which would mean a growth of 23 % compared to 2007. In the average growth scenario, the total tonnes were estimated to be 431.6 M tonnes – a growth of 64 %, and in the strong growth scenario 507.2 M tonnes – a growth of 93%. These tonnes were further divided into petroleum products and other cargoes by country, into export, import and domestic traffic by country, and between the ports. For petroleum products, the share of crude oil and oil products was estimated and the number of tanker calls in 2015 was calculated for each scenario. However, the future development of maritime transportation in the GoF is dependent on so many societal and economic variables that it is not realistic to predict one exact point estimate value for the cargo tonnes for a certain scenario. Plenty of uncertainty is related both to the degree in which the scenario will come true as well as to the cause-effect relations between the different variables. For these reasons, probability distributions for each scenario were formulated by an expert group. As a result, a range for the total tonnes of each scenario was formulated and they are as follows: the slow growth scenario: 280.8 – 363 M tonnes (expectation value 322.4 M tonnes) the average growth scenario: 404.1 – 465.1 M tonnes (expectation value 431.6 M tonnes) the strong growth scenario: 445.4 – 575.4 M tonnes (expectation value 507.2 M tonnes) Three alternatives scenarios were evaluated to realize most likely with the following probability distribution: the slow growth scenario: 35 % the average growth scenario: 50 % the strong growth scenario: 15 %. In other words, expert group evaluated the average growth scenario to be the most likely to realize, second likely was the slow growth scenario, and the strong growth scenario was evaluated to be the most unlikely to realize. In sum, it can be stated that the development of maritime transportation in the Gulf of Finland is dominated by the development of Russia, because Russia dominates the cargo volumes. Maritime transportation in Finland is expected to be more stable and, in any case, such a growth potential cannot be seen in Finland. The development of maritime transportation in Estonia is rather challenging to forecast at the moment but, on the other hand, the transported tonnes in the Estonian ports are relatively small. The shares of export and import of the maritime transportation are not expected to change radically in the reference period. Petroleum products will dominate the transports also in the future and the share of oil products will probably increase compared to the share of crude oil. In regard to the other cargoes, the transports of raw materials and bulk goods will probably be replaced to some extend by cargoes of high-value, which adds especially to the container transports. But in overall, substantial changes are not expected in the commodity groups transported by sea. The growth potential of the ports concentrates on the Russian ports, especially Primorsk and Ust-Luga, if investments will come true as planned. It is likely that the larger ports do better in the competition than the small ones due to the economies of scale and to the concentration of cargo flows. The average ship sizes will probably grow, but the growth potential is rather limited because of geographical conditions and of the maritime transportation structure in the Gulf of Finland. Climate change and other environmental aspects are becoming more central e.g. in transportation politics. These issues can affect the maritime transportation in the Gulf of Finland through, for instance, strict environmental requirements concerning the emissions from shipping, or the port investments. If environmental requirements raise costs, it can affect the demand of transportation. In the near future, the development of the maritime transportation in the Gulf of Finland is mainly dependent on the current economic instability. If it will lead to a longer lasting recession, the growth of the transported tonnes will slow down. But if the instability does not last long, it can be expected that the economic growth will continue and along with it also the growth of transported tonnes.Siirretty Doriast

    Modelling of wave climate and sediment transport patterns at a tideless embayed beach, Pirita Beach, Estonia

    Get PDF
    Nearshore sand transport patterns along the tideless, embayed Pirita beach, Tallinn, Estonia, have been investigated utilizing high-resolution modelling of wave processes combined with bathymetric surveys and sediment textural analyses of the nearshore sea floor. Textural analysis showed the mean grain size is about 0.12 mm. Fine sand (0.063–0.125 mm) accounts for about 77% of the sediments. Coarser-grained sand (0.28 mm) dominates along the waterline. Based upon the spatial distribution of the mean grain size and basic features of the local wave activity, properties of the Dean Equilibrium Beach Profile were determined. Alongshore sediment transport was calculated based upon a long-term time series of wave properties along the beach, and the CERC formula applied to about 500 m long beach sectors. The time series of wave fields and the properties of the local wave climate were modelled using a triple nested WAM wave model with an extended spectral range for short waves. The model is forced by open sea wind data from Kalbådagrund for the years 1981–2002. Results indicate that typical closure depth at Pirita is 2.5 m. The width and mean slope of the equilibrium profile are 250 m and 1:100, respectively. Southward transport dominates in the northern sections of the beach whereas no prevailing transport direction exists in the southern sections. This pattern has several nontrivial implications for the planning of beach protection activities

    An integrated simulation model to evaluate national policies for the abatement of agricultural nutrients in the Baltic Sea

    Get PDF
    This study introduces a prototype model for evaluating policies to abate agricultural nutrients in the Baltic Sea from a Finnish national point of view. The stochastic simulation model integrates nutrient dynamics of nitrogen and phosphorus in the sea basins adjoining the Finnish coast, nutrient loads from land and other sources, benefits from nutrient abatement (in the form of recreation and other ecosystem services) and the costs of agricultural abatement activities. The aim of this study is to present the overall structure of the model and to demonstrate its potential using preliminary parameters
    corecore